1,771 research outputs found

    The Joint Vienna Institute

    Get PDF
    "How does the intellectual role played by international training organisations fit into the contemporary architecture of global governance? The international diffusion of economic policy ideas represents one of the core dimensions of contemporary global governance, which has generated heated controversy in recent years with international institutions such as the International Monetary Fund (IMF) and the World Bank castigated for championing a ‘one-size-fits-all’ brand of neoliberal economic reform. Yet while substantial scholarly attention has focused on analysing the effects of the formal compliance mechanisms that the IMF and the World Bank rely on to implement neoliberal policy changes in borrowing countries, such as loan conditionality, less attention has been devoted to exploring the intermediate avenues through which neoliberal ideas travel from global governance institutions to national governance contexts. This article aims to address this gap in the study of contemporary global governance and neoliberal policy diffusion through critically examining the evolving role of the Joint Vienna Institute (JVI), an international training organisation set up after the end of the Cold War to transmit global ‘best practice’ economic policy ideas to national officials in post-communist economies.

    Observation of Entanglement-Dependent Two-Particle Holonomic Phase

    Get PDF
    Holonomic phases---geometric and topological---have long been an intriguing aspect of physics. They are ubiquitous, ranging from observations in particle physics to applications in fault tolerant quantum computing. However, their exploration in particles sharing genuine quantum correlations lack in observations. Here we experimentally demonstrate the holonomic phase of two entangled-photons evolving locally, which nevertheless gives rise to an entanglement-dependent phase. We observe its transition from geometric to topological as the entanglement between the particles is tuned from zero to maximal, and find this phase to behave more resilient to evolution changes with increasing entanglement. Furthermore, we theoretically show that holonomic phases can directly quantify the amount of quantum correlations between the two particles. Our results open up a new avenue for observations of holonomic phenomena in multi-particle entangled quantum systems.Comment: 8 pages, 6 figure

    Efficient measurement of quantum dynamics via compressive sensing

    Get PDF
    The resources required to characterise the dynamics of engineered quantum systems-such as quantum computers and quantum sensors-grow exponentially with system size. Here we adapt techniques from compressive sensing to exponentially reduce the experimental configurations required for quantum process tomography. Our method is applicable to dynamical processes that are known to be nearly-sparse in a certain basis and it can be implemented using only single-body preparations and measurements. We perform efficient, high-fidelity estimation of process matrices on an experiment attempting to implement a photonic two-qubit logic-gate. The data base is obtained under various decoherence strengths. We find that our technique is both accurate and noise robust, thus removing a key roadblock to the development and scaling of quantum technologies.Comment: New title and authors. A new experimental section. Significant rewrite of the theor

    Discrete single-photon quantum walks with tunable decoherence

    Get PDF
    Quantum walks have a host of applications, ranging from quantum computing to the simulation of biological systems. We present an intrinsically stable, deterministic implementation of discrete quantum walks with single photons in space. The number of optical elements required scales linearly with the number of steps. We measure walks with up to 6 steps and explore the quantum-to-classical transition by introducing tunable decoherence. Finally, we also investigate the effect of absorbing boundaries and show that decoherence significantly affects the probability of absorption.Comment: Published version, 5 pages, 4 figure

    Two-photon quantum walks in an elliptical direct-write waveguide array

    Full text link
    Integrated optics provides an ideal test bed for the emulation of quantum systems via continuous-time quantum walks. Here we study the evolution of two-photon states in an elliptic array of waveguides. We characterise the photonic chip via coherent-light tomography and use the results to predict distinct differences between temporally indistinguishable and distinguishable two-photon inputs which we then compare with experimental observations. Our work highlights the feasibility for emulation of coherent quantum phenomena in three-dimensional waveguide structures.Comment: 8 pages, 7 figure

    Neural Circuitry of Novelty Salience Processing in Psychosis Risk: Association With Clinical Outcome

    Get PDF
    Psychosis has been proposed to develop from dysfunction in a hippocampal-striatal-midbrain circuit, leading to aberrant salience processing. Here, we used functional magnetic resonance imaging (fMRI) during novelty salience processing to investigate this model in people at clinical high risk (CHR) for psychosis according to their subsequent clinical outcomes. Seventy-six CHR participants as defined using the Comprehensive Assessment of At-Risk Mental States (CAARMS) and 31 healthy controls (HC) were studied while performing a novelty salience fMRI task that engaged an a priori hippocampal-striatal-midbrain circuit of interest. The CHR sample was then followed clinically for a mean of 59.7 months (~5 y), when clinical outcomes were assessed in terms of transition (CHR-T) or non-transition (CHR-NT) to psychosis (CAARMS criteria): during this period, 13 individuals (17%) developed a psychotic disorder (CHR-T) and 63 did not. Functional activation and effective connectivity within a hippocampal-striatal-midbrain circuit were compared between groups. In CHR individuals compared to HC, hippocampal response to novel stimuli was significantly attenuated (P = .041 family-wise error corrected). Dynamic Causal Modelling revealed that stimulus novelty modulated effective connectivity from the hippocampus to the striatum, and from the midbrain to the hippocampus, significantly more in CHR participants than in HC. Conversely, stimulus novelty modulated connectivity from the midbrain to the striatum significantly less in CHR participants than in HC, and less in CHR participants who subsequently developed psychosis than in CHR individuals who did not become psychotic. Our findings are consistent with preclinical evidence implicating hippocampal-striatal-midbrain circuit dysfunction in altered salience processing and the onset of psychosis

    Rationality as the Rule of Reason

    Get PDF
    The demands of rationality are linked both to our subjective normative perspective (given that rationality is a person-level concept) and to objective reasons or favoring relations (given that rationality is non-contingently authoritative for us). In this paper, I propose a new way of reconciling the tension between these two aspects: roughly, what rationality requires of us is having the attitudes that correspond to our take on reasons in the light of our evidence, but only if it is competent. I show how this view can account for structural rationality on the assumption that intentions and beliefs as such involve competent perceptions of downstream reasons, and explore various implications of the account

    Experimental distribution of entanglement with separable carriers

    Get PDF
    The key requirement for quantum networking is the distribution of entanglement between nodes. Surprisingly, entanglement can be generated across a network without direct transfer-or communication-of entanglement. In contrast to information gain, which cannot exceed the communicated information, the entanglement gain is bounded by the communicated quantum discord, a more general measure of quantum correlation that includes but is not limited to entanglement. Here, we experimentally entangle two communicating parties sharing three initially separable photonic qubits by exchange of a carrier photon that is unentangled with either party at all times. We show that distributing entanglement with separable carriers is resilient to noise and in some cases becomes the only way of distributing entanglement through noisy environments
    corecore